Interactions of human endothelial cells with gold nanoparticles of different morphologies.

نویسندگان

  • Dorota Bartczak
  • Otto L Muskens
  • Simone Nitti
  • Tilman Sanchez-Elsner
  • Timothy M Millar
  • Antonios G Kanaras
چکیده

The interactions between noncancerous, primary endothelial cells and gold nanoparticles with different morphologies but the same ligand capping are investigated. The endothelial cells are incubated with gold nanospheres, nanorods, hollow gold spheres, and core/shell silica/gold nanocrystals, which are coated with monocarboxy (1-mercaptoundec-11-yl) hexaethylene glycol (OEG). Cell viability studies show that all types of gold particles are noncytotoxic. The number of particles taken up by the cells is estimated using inductively coupled plasma (ICP), and are found to differ depending on particle morphology. The above results are discussed with respect to heating efficiency. Using experimental data reported earlier and theoretical model calculations which take into account the physical properties and distribution of particles in the cellular microenvironment, it is found that collective heating effects of several cells loaded with nanoparticles must be included to explain the observed viability of the endothelial cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of Radiation Dose Enhancement to Capillary Endothelial Cells Due to the Presence of Heavy Metal Nanoparticles in Two Cell and Tumor Scales by Monte Carlo Method

Introduction: Recently, the use of various sensitizers has been used to increase photon-induced doses in brachytherapy. One of these cases is the addition of heavy metal nanoparticles such as gold in the target area, which increases the production of ionizing electrons by increasing the possibility of photoelectric effects, and increases the efficacy of the treatment. In this study, the target ...

متن کامل

Laser-induced damage and recovery of plasmonically targeted human endothelial cells.

Laser-induced techniques that employ the surface plasmon resonances of nanoparticles have recently been introduced as an effective therapeutic tool for destroying tumor cells. Here, we adopt a low-intensity laser-induced technique to manipulate the damage and repair of a vital category of noncancerous cells, human endothelial cells. Endothelial cells construct the interior of blood vessels and ...

متن کامل

Pathogenic interactions between Helicobacter pylori adhesion protein HopQ and human cell surface adhesion molecules CEACAMs in gastric epithelial cells

Objective(s): The present paper aims to review the studies describing the interactions between HopQ and CEACAMs along with possible mechanisms responsible for pathogenicity of Helicobacter pylori.Materials and Methods: The literature was searched on “PubMed” using different key words including Helicobacter pylori, CEACAM and gastric.<br ...

متن کامل

The effect of gold nanoparticles on dose enhancement factor of human intestinal colon cancer HT-29 cells

Introduction: Radiation therapy is an important procedure for treatment of more than half of tumors. One way to increase the efficiency of radiation therapy is application of radiosensitizer at the site of tumor. gold nanoparticles (GNPs) have several characteristics that make them attractive for using with radiation therapy including small size (1–100 nm), biocompatibility, pr...

متن کامل

Conjugation of Polymer-Coated Gold Nanoparticles with Antibodies—Synthesis and Characterization

The synthesis of polymer-coated gold nanoparticles with high colloidal stability is described, together with appropriate characterization techniques concerning the colloidal properties of the nanoparticles. Antibodies against vascular endothelial growth factor (VEGF) are conjugated to the surface of the nanoparticles. Antibody attachment is probed by different techniques, giving a guideline abo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Small

دوره 8 1  شماره 

صفحات  -

تاریخ انتشار 2012